Goals

- to introduce CS modules relative to a torsion theory
 - τ-CS modules: a generalization of CS modules,
 - s-τ-CS modules: a specialization of CS modules,
- to investigate their relationship with τ-injective, τ-simple and τ-uniform modules,
- to compare them with alternative generalizations (e.g. τ-complemented (τ-injective) modules),
- to decompose (s-)\τ-CS modules into indecomposables,
- when is a direct sum of (s-)\τ-CS modules (s-)\τ-CS?
Preliminary Concepts: Notation

- **modules**: left R-modules for some unitary ring R.

- **homomorphisms**: R-module homomorphisms.

- **R-Mod**: class of all left R-modules.

- **$\tau = (T, F)$**: hereditary torsion theory on R-Mod.
 - T: class of all τ-torsion modules.
 - F: class of all τ-torsionfree modules.

- **$t_{\tau}(M)$**: the τ-torsion submodule of a module M.

Preliminary Concepts

Def. A submodule N of M is called τ-dense (τ-pure)
- if M/N is τ-torsion, (if M/N is τ-torsionfree),
- we then write $N \leq_{\tau-d} M$, (we then write $N \leq_{\tau-p} M$),
- $D_{\tau}(M) = \{\tau$-dense sub.}, ($P_{\tau}(M) = \{\tau$-pure sub.}$)$

Def. The τ-pure closure of N in M is:
- $\text{Cl}_{\tau}^M(N) = N^c = \bigcap\{K \in P_{\tau}(M) \mid N \leq K\}$

Def. A module M is called τ-presimple if it has
- exactly two τ-pure submodules, i.e., $t_{\tau}(M)$ and M.

Def. A module M is called τ-simple if:
- it is τ-presimple and τ-torsionfree.
Preliminary Concepts

Prop. A module M is τ-simple if and only if
- M is nonzero τ-torsionfree, and
- every nonzero submodule of M is τ-dense in M.

Def. A module M is called τ-compact if:
- every nonzero submodule of M is τ-dense in M.

Prop. A module M is τ-compact if and only if
- M is τ-torsion or τ-simple.

Def. A submodule N of M is called τ-essential if:
- N is essential and τ-dense in M.

τ-uniform and τ-complement modules

Def. A module M is called τ-uniform if:
- every nonzero submodule of M is τ-essential in M.

\Leftrightarrow M is uniform and τ-compact.

\Leftrightarrow Either M is τ-simple or both uniform and τ-torsion.

Let K and L be submodules of a module M. Then:

Def. K is called a τ-complement of N in M if
- K is maximal with respect to \leq in the class
 \[
 \{ L \leq M \mid L \cap N = 0 \text{ and } L \oplus N \in \mathcal{D}_\tau(M) \}
 \]

Def. K is called a τ-complement submodule of M if
- K is a τ-complement of some submodule N of M
Existence of τ-complements

Prop. A submodule N of M has a τ-complement in M if
$\Leftrightarrow (\exists K \leq M)$ such that $K \cap N = 0$ and $K \oplus N \in D_\tau(M)$

Def. A torsion theory τ is called **cohereditary** if
- \mathcal{F} is closed under homomorphic images

Note: τ-complements do NOT always exist.
- If $N \leq_e M$ and $N \not\in D_\tau(M)$ then N has no τ-complement in M.
- Let $\tau = (\mathcal{T}, \mathcal{F})$ be a **cohereditary** torsion theory.
 - If $M \in \mathcal{F}$ then $(\forall M \neq N \leq_e M)$ N has no τ-complement in M.

τ-M-Injective Modules

Def. A module E is **τ-M-injective**, for a module M, if:
- every hom. from a τ-dense submodule N of M to E extends to a homomorphism from M to E.
- *i.e.* for any $N \in D_\tau(M)$ and any $f \in \text{Hom}_R(N, E)$ there is a $g \in \text{Hom}_R(M, E)$ such that:

$$
\begin{array}{ccc}
0 & \longrightarrow & N & \xrightarrow{i} & M \\
\downarrow f & & \downarrow & & \downarrow (\exists g)
g|_N = f \\
E & & \longleftarrow & & \end{array}
$$
More relatively injective modules

Def. A module E is **τ-quasi-injective**, if:
- E is $τ$-E-injective.

Def. A module E is **τ-injective**, if:
- E is $τ$-M-injective for any module M.

Def. A family $\{E_i | i \in I\}$ is relatively **τ-injective**, if:
- E_i is $τ$-E_j-injective for any $i \neq j \in I$.

Def. E is an **τ-injective hull** of M, denoted by $E_τ(M)$
- E is a minimal $τ$-injective extension of M, $⇔$
- E is a maximal $τ$-essential extension of M, $⇔$
- E is a $τ$-injective $τ$-essential extension of M.

τ-CS modules

Def. A module M is called **τ-CS** if any one of the following equivalent conditions holds:

(1) Every $τ$-dense submodule of M is essential in a direct summand of M.

(2) Every $τ$-dense submodule of M is $τ$-essential in a direct summand of M.

(3) Every $τ$-dense, $τ$-essentially closed submodule of M is a direct summand of M.

(4) Every $τ$-dense, essentially closed submodule of M is a direct summand of M.

Prop. By (1) or (4) we get: Every CS module is $τ$-CS.
Quasi-continuous modules

A module \(M \) is called *quasi-continuous* if it satisfies:

1. **(C1)** \((\forall N \leq M) \ (\exists N^* \leq M)\) such that \(N \leq_e N^* \leq_\oplus M\).
2. **(C3)** For any \(K, L \leq M \), if \(K \leq_\oplus M \), \(L \leq_\oplus M \) and \(K \cap L = 0 \) then \(K \oplus L \leq_\oplus M\).

Prop. The following are equivalent for a module \(M \):

- \(M \) is quasi-continuous.
- If \(C \) and \(D \) are complements of each other in \(M \) then \(C \oplus D = M \).
- For any \(f^2 = f \in \text{End}_R(E(M)) \) we have \(f(M) \leq M \).
- If \(E(M) = \bigoplus_{i \in I} E_i \) then \(M = \bigoplus_{i \in I} (M \cap E_i) \).

τ-Quasi-continuous modules

Def. A module \(M \) is said to be *τ-quasi-continuous* if

- For any \(f^2 = f \in \text{End}_R(E_\tau(M)) \) we have \(f(M) \leq M \).

Prop. Let \(M \) be a module. We have \((1) \Rightarrow (2) \Rightarrow (3)\).

1. \(M \) is \(\tau \)-quasi-continuous.
2. If \(E_\tau(M) = \bigoplus_{i \in I} E_i \) then \(M = \bigoplus_{i \in I} (M \cap E_i) \).
3. **(τ-C1)** for any \(N \in D_\tau(M) \) there exists an \(N^* \leq M \) such that \(N \leq_\tau-e N^* \leq_\oplus M \).

τ-C3 for any \(K_1 \leq_\oplus M \), \(K_2 \leq_\oplus M \), if \(K_1 \cap K_2 = 0 \) and \(K_1 \oplus K_2 \in D_\tau(M) \), then \(K_1 \oplus K_2 \leq_\oplus M \)
Examples of τ-quasi-continuous modules

Prop. A module M is τ-quasi-injective if and only if

- For any $f \in \text{End}_R(E_\tau(M))$ we have $f(M) \leq M$. Thus:

$\{\tau\text{-injective}\} \subseteq \{\tau\text{-quasi-injective}\} \subseteq \{\tau\text{-quasi-continuous}\}$

Prop. Since (C1) \Rightarrow (C1) and (C3) \Rightarrow (C3) we have:

- $\{\text{quasi-continuous}\} \subseteq \{\tau\text{-quasi-continuous}\} \subseteq \{\tau\text{-CS}\}$

Def. A module M is called $s\tau$-CS (strongly τ-CS) if any one of the following equivalent conditions holds:

1. Every submodule of M is τ-essential in a direct summand of M.
2. Every τ-essentially closed submodule of M is a direct summand of M.

Examples of $s\tau$-CS modules

Prop. The following are equivalent for a module M:

1. M is τ-uniform.
2. M is $s\tau$-CS and indecomposable.
3. M is CS, indecomposable and τ-compact.
4. M is τ-CS, indecomposable and τ-compact.

Examples of $s\tau$-CS modules:

- $\{\tau\text{-simple}\} \subseteq \{\tau\text{-uniform}\} \subseteq \{s\tau\text{-CS}\}$
- $\{\tau\text{-torsion }\tau\text{-CS}\} \subseteq \{\tau\text{-compact }\tau\text{-CS}\} \subseteq \{s\tau\text{-CS}\}$
Decomposition of τ-CS modules

Okado: Let M be CS with the ACC on $\{ (0 : x) \mid x \in M \}$.

- Then $M = \bigoplus_i U_i$, with the U_i indecomposable uniform.

Note: A refinement of Masaike and Horigome, $[(1) \iff (3)]$

Theorem: The following statements are equivalent:

1. R has ACC on τ-dense left ideals, i.e., $D_\tau(R)$ has ACC.
2. Each τ-torsion τ-CS R-module is a direct sum of τ-uniform (τ-CS) submodules.
3. Each τ-torsion τ-injective R-module is a direct sum of τ-uniform (τ-injective) submodules.

Direct Sum of s-τ-CS modules

Lem. Let $M = M_1 \oplus M_2$, with M_1, M_2 τ-compact s-τ-CS.

Then the following statements are equivalent:

1. M is s-τ-CS.
2. For any τ-essentially closed submodule N of M, if $N \cap M_1 = 0$ or $N \cap M_2 = 0$ then $N \leq \bigoplus M$.

Thm. Let $M = M_1 \oplus \cdots \oplus M_n$ be a finite direct sum of relatively τ-injective τ-compact modules.

- Then M is s-τ-CS if and only if each M_i is s-τ-CS.

Cor. Since $\{ \tau$-simple $\} \subseteq \{ \tau$-uniform $\} \subseteq \{ \tau$-compact $\}$

- Every finite direct sum of relatively τ-injective, τ-simple (or τ-uniform) modules is s-τ-CS.
τ-Okado & τ-complemented modules

Thm. [τ-Okado] The following statements are equivalent:

1. R is τ-Noetherian, i.e., R has ACC on τ-pure left ideals.

2. Every τ-torsionfree CS R-module is a direct sum of indecomposable submodules.

3. Every τ-torsionfree injective R-module is a direct sum of indecomposable submodules.

Def. [SVV] A module M is called τ-complemented if

- $(\forall N \leq M)(\exists N^* \leq M)$ such that $N \leq_{\tau-d} N^* \leq \bigoplus M$.

Note: If $M \in \mathcal{F}$ and τ-complemented then M is CS.

Example: Every $s-\tau$-CS module is τ-complemented.

Okado: τ-complemented versus s-τ-CS

Thm. [SVV] For a τ-complemented R-module M, (1) \iff (2)

1. $M = T \oplus \bigoplus_i S_i$ with $T \in T$, $(\forall i \in I) S_i$ is τ-simple

2. R has ACC on $\{(0 : x) \mid x \in M/t_\tau(M)\}$

Lemma For a $s-\tau$-CS R-module M:

- If R has ACC on $\{(0 : x) \mid x \in M/t_\tau(M)\}$ and
 - on $\{(0 : x) \mid x \in t_\tau(M)\}$

 then $M = \bigoplus_i U_i$ s.t. $(\forall i \in I) U_i$ is τ-uniform ($s-\tau$-CS)

Corollary

- If R has ACC on $P_\tau(R)$ (τ-pure ideals) and
 - on $D_\tau(R)$ (τ-dense ideals)

 then every s-τ-CS R-module $= \bigoplus \tau$-uniform submodules
Chain conditions and s-τ-CS modules

Prop. For a s-τ-CS R-module M:
- If M is a direct sum of $τ$-uniform (s-τ-CS) submodules then R has ACC on \(\{ (0 : x) \mid x \in M/t_τ(M) \} \)

Note: If in addition $t_τ(M)$ is non-singular then
- R has ACC on \(\{ (0 : x) \mid x \in t_τ(M) \} \)

Prop. If every s-τ-CS R-module $= \bigoplus τ$-uniform (s-τ-CS)
- then R has ACC on $D_τ(R) = \{ τ$-dense ideals\}

Note: It is an open question whether in addition
- R has ACC on $P_τ(R) = \{ τ$-pure ideals\}

s-τ-CS and τ-complemented τ-injective modules

Def. [Crivei] A module M is called minimal $τ$-injective if
- For any $0 \neq N \subseteq M$ we have $M = E_τ(N)$

or M is minimal $τ$-injective $⇔ M$ is $τ$-uniform $τ$-injective

Def. [MH] We call a module M $τ$-completely decomposable
- if $M = \bigoplus_I M_i$ where each M_i is minimal $τ$-injective

Prop. If M is $τ$-complemented $τ$-injective then M is s-τ-CS

M is $τ$-complemented $τ$-injective $⇔ M$ is s-τ-CS $τ$-injective

Thm. [Crivei] If R has ACC on $D_τ(R)$ and $P_τ(R)$ then
- an R-module M is $τ$-completely decomposable
 if and only if M is $τ$-complemented $τ$-injective
Some open questions

Open question 1
• If R has ACC on $\mathcal{P}_\tau(R)$ and $\mathcal{D}_\tau(R)$ then
 is every direct sum of τ-uniform (s-τ-CS) modules s-τ-CS?

Note: If the answer to the above is positive then
• we have a refinement of the previous theorem by Crivei
 i.e. we have a positive answer to the following question:

Open question 2
• If R has ACC on $\mathcal{P}_\tau(R)$ and $\mathcal{D}_\tau(R)$ then
 an R-module M is τ-completely decomposable
 if and only if M is s-τ-CS